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Abstract
The twisted XXZ chain alias the six-vertex model is investigated at roots of
unity. It is shown that when the twist parameter is chosen to depend on the total
spin an infinite-dimensional non-Abelian symmetry algebra can be explicitly
constructed in all spin sectors. This symmetry algebra can be identified with
the upper or lower Borel subalgebra of the sl2 loop algebra. The proof uses
only the intertwining property of the six-vertex monodromy matrix and the
familiar relations of the six-vertex Yang–Baxter algebra.

PACS numbers: 75.10.Nr, 02.30.Ik, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years there has been renewed interest in the degeneracies exhibited by the integrable
six-vertex model and the associated XXZ quantum spin chain,

H =
M∑

m=1

σ +
mσ−

m+1 + σ−
m σ +

m+1 +
q + q−1

4
σ z

mσ z
m+1 σ±

M+1 ≡ σ±
1 σ z

M+1 ≡ σ z
1 (1)

when the anisotropy parameter is evaluated at roots of unity qN = 1. In [1], Deguchi et al
showed for the commensurate sectors 2Sz = 0 mod N (with Sz being the total spin) that
the model with periodic boundary conditions exhibits an s̃l2 = sl2 ⊗ C[t, t−1] loop algebra
symmetry. Outside these commensurate sectors the algebraic structure of the symmetry
algebra has so far not been established except for N = 4, i.e. the case of vanishing anisotropy
parameter, the XX model and a numerical construction for N = 3, see [1] for details.

In two recent works [2, 3] the twisted XXZ chain at roots of unity has been investigated,
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In [2] various operators have been constructed which (anti)commute with the twisted XXZ
Hamiltonian and the associated transfer matrix. Except for the cases λ = −1 the algebraic
structure underlying these operators has not been identified. Similarly as for the periodic
case the s̃l2 symmetry algebra for λ = −1 has been restricted to certain commensurate spin
sectors. The discussion in [2] has also been extended to include the case of the inhomogeneous
chain.

In the second work [3], the construction of operators creating complete strings for
the periodic homogeneous chain carried out in [4] has been generalized to cover also the
twisted and inhomogeneous case. The construction of the symmetry algebra underlying the
degeneracies in the spectra of the Hamiltonian and the transfer matrix has not been investigated.

In this paper it is shown that when the twist parameter is chosen to depend on the
total spin, i.e. λ = q±2Sz

, the quantum spin-chain Hamiltonian and the associated twisted six-
vertex transfer matrix exhibit infinite-dimensional non-Abelian symmetries and their algebraic
structure is identified with the lower, respectively upper, Borel subalgebra U(b∓) ⊂ U(s̃l2).
In contrast to the case of periodic boundary conditions the construction of the symmetry
algebra is given explicitly for all spin sectors at arbitrary roots of unity. In the spin sectors
2Sz = 0 mod N one obviously recovers the periodic chain and the symmetry is enhanced
to the full loop algebra U(s̃l2) reproducing the aforementioned result of [1]. However, also
for the periodic case we give a novel proof of the symmetry which only uses the framework
of the algebraic Bethe ansatz [5] and quantum group theory [6, 7]. In particular, it avoids
having first to prove translation invariance, cf [1, 8, 9]. The extension to the inhomogeneous
case is also discussed.

2. The twisted six-vertex model

The starting point of our discussion is the six-vertex R-matrix which is given by

R(z, q) = a+b
2 1 ⊗ 1 + a−b

2 σ z ⊗ σ z + cσ + ⊗ σ− + c′σ− ⊗ σ + (3)

where we choose the following parametrization of the Boltzmann weights:

a = 1 b = 1 − z

1 − zq2
q c = 1 − q2

1 − zq2
c′ = cz. (4)

Here z denotes the (multiplicative) spectral parameter and q is the deformation parameter
appearing in the spin-chain Hamiltonians (1) and (2). Central to our discussion will be
the properties of the (inhomogeneous) six-vertex monodromy matrix which one usually
decomposes over the two-dimensional auxiliary space,

R0M(z/ζM) · · · R01(z/ζ1) = σ +σ− ⊗ A + σ + ⊗ B + σ− ⊗ C + σ−σ + ⊗ D. (5)

The explicit dependence on the spectral parameter and the inhomogeneity parameters
ζ = (ζ1, . . . , ζM) will be often suppressed in the notation in order to unburden the formulae.
The twisted six-vertex transfer matrix is defined as the trace

T λ(z) = Tr
0

λ
σz⊗1

2 R0M(z/ζM) · · · R01(z/ζ1) = λ
1
2 A(z) + λ− 1

2 D(z). (6)

For the homogeneous chain ζ1 = · · · = ζM = 1 we obtain up to an additive constant the
spin-chain Hamiltonian (2) as the following logarithmic derivative:

Hλ = (q − q−1)T λ(z)−1 z
d

dz
T λ(z)

∣∣∣∣
z=1

+ M
q + q−1

2
. (7)

Obviously, the twist does not alter the algebraic relations of the Yang–Baxter algebra defined
in terms of {A,B,C,D} in (5). In order to discuss the symmetries of (2) and (6) when the
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deformation parameter q is a root of unity we first establish a number of relations between
the Chevalley–Serre basis of the quantum group Uq(s̃l2) and the matrix elements of the
monodromy matrix (5) for generic q and λ.

3. The Chevalley–Serre basis of Uq(s̃l2)

It is well known that the underlying algebraic structure of the six-vertex model is the quantum
loop algebra Uq(s̃l2). Its algebraic definition [6, 7] in terms of the Chevalley–Serre basis is

ki ej k
−1
i = qAij ej kifj k

−1
i = q−Aij fj kikj = kj ki i, j = 0, 1 (8)

where the Cartan matrix reads

A =
(

2 −2
−2 2

)
.

In addition one has to impose for i �= j the Chevalley–Serre relations

e3
i ej − [3]q e2

i ej ei + [3]q ei ej e2
i − ej e3

i = 0
(9)

f 3
i fj − [3]qf

2
i fjfi + [3]qfifjf

2
i − fjf

3
i = 0.

The quantum algebra can be made into a Hopf algebra upon defining a coproduct which we
choose to be

�(ei) = 1 ⊗ ei + ki ⊗ ei �(fi) = fi ⊗ k−1
i + 1 ⊗ fi

�(ki) = ki ⊗ ki i = 0, 1.
(10)

The opposite coproduct �op is obtained by permuting the two factors. The six-vertex R-matrix
intertwines the two coproduct structures in the case of the spin 1/2 representation, i.e.

R(z/ζ )(πz ⊗ πζ )�(x) = (πz ⊗ πζ )�
op(x)R(z/ζ ) (11)

with the representation πz : Uq(s̃l2) → End C
2 given in terms of Pauli matrices by

πz(e0) = zσ− πz(f0) = z−1σ + πz(k0) = q−σ z

πz(e1) = σ + πz(f1) = σ− πz(k1) = qσz

.
(12)

From the fusion relation (1 ⊗ �)R = R13R12 an analogous intertwining relation follows for
the monodromy matrix (5) with regard to the quantum group generators on the quantum spin
chain πζ1 ⊗ · · · ⊗ πζM

,

Ki = qεiσ
z ⊗ · · · ⊗ qεiσ

z = qεi2Sz

Ei =
M∑

m=1

ζ δi0
m qεiσ

z ⊗ · · · qεiσ
z ⊗ σ

εi

mth ⊗ 1 · · · ⊗ 1 (13)

Fi =
M∑

m=1

ζ−δi0
m 1 ⊗ · · · 1 ⊗ σ

−εi

mth ⊗ q−εiσ
z · · · ⊗ q−εiσ

z

εi := (−1)i+1.

Here i = 0, 1 as before1. From the intertwining property of the monodromy matrix one then
obtains the commutators

[A,K1] = [D,K1] = 0 K1BK−1
1 = q−2B K1CK−1

1 = q2C (14)
1 Note that we have chosen to work in the homogeneous gradation in (12 ) in accordance with the parametrization (4)
of the Boltzmann weights. Equally well, we could have used the principal gradation in which the six-vertex R-matrix
(3) is symmetric. Then all Chevalley–Serre generators in (12) would acquire a spectral parameter dependence and
the generators (13) would correspond to those discussed in equation (50) of [2]. The choice of the gradation does not
alter the algebraic structure.
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and

[E1, A]q = −K1C [E1, B]q−1 = A − K1D [E1, C]q = 0

[E1,D]q−1 = C [A,F1]q−1 = −BK−1
1 [B,F1]q−1 = 0 (15)

[C,F1]q = A − DK−1
1 [D,F1]q = B.

Here [x, y]q = xy − qyx. The commutation relations for the affine generators {E0, F0,K0}
are obtained by the simultaneous replacement

(A,B,C,D) → (D, z−1C, zB,A) and (E1, F1,K1) → (E0, F0,K0). (16)

Note that for the homogeneous case ζ1 = · · · = ζM = 1 the above algebra automorphism is
implemented by the spin-reversal operator R = σx ⊗ · · · ⊗ σx ,

REiR = Ei+1 RFiR = Fi+1 RKiR = Ki+1 i ∈ Z2. (17)

Instead of the spin 1/2 representation (12) one might equally well use evaluation
representations of higher spin in the definition of the spin-chain generators (13), as has similarly
been done in [3]. As long as the auxiliary space is not altered the form of the commutation
relations (14) and (15) is unchanged. From (15) one now deduces by a straightforward
computation the following relations for the twisted six-vertex transfer matrix2:

En
1 T λ = (

qnλ
1
2 A + q−nλ− 1

2 D
)
En

1 + λ− 1
2 [n]q(1 − λK1)CEn−1

1
(18)

En
0 T λ = (

q−nλ
1
2 A + qnλ− 1

2 D
)
En

0 + λ
1
2 z[n]q(1 − λ−1K0)BEn−1

0

and

Fn
1 T λ = (

qnλ
1
2 A + q−nλ− 1

2 D
)
Fn

1 − λ− 1
2 [n]qq

−n
(
1 − λK−1

1

)
Fn−1

1 B
(19)

Fn
0 T λ = (

q−nλ
1
2 A + qnλ− 1

2 D
)
Fn

0 − λ
1
2 z−1[n]qq

−n
(
1 − λ−1K−1

0

)
Fn−1

0 C.

We are now in a position to discuss the symmetry algebras of the twisted six-vertex transfer
matrix at roots of unity.

4. Infinite non-Abelian symmetries at qN = 1

Henceforth we set the deformation parameter q to be a primitive root of unity of order N � 3.
This entails significant changes in the algebraic structure of the quantum loop algebra Uq(s̃l2).
There now exist two versions of the algebra, one of them, which we denote by Uq(s̃l2), has
an enlarged centre compared to generic q. Its representation theory has been discussed to
some extent in [10]. The other version from which we will obtain the symmetry generators is
the restricted quantum algebra U res

q (s̃l2). It can be realized as automorphisms over Uq(s̃l2).
Details on its representation theory can be found in [11]. For the present purposes it will
be important that for evaluation representations of the form (12) used in the definition of the
quantum spin chain one can write down explicit formulae for the generators of U res

q (s̃l2): for
some q̃ with q̃N �= 1 and n ∈ N we set

E
(n)
1 = lim

q̃→q
En

1 (q̃)/[n]q̃! =
∑
mi

qnσz ⊗ · · · ⊗ σ +
mth

1
⊗ q(n−1)σ z · · · ⊗ σ +

mth
2

⊗ q(n−2)σ z · · · qσz ⊗ σ +
mth

n
⊗ 1 · · · ⊗ 1

2 Note that these equations imply similar commutation relations for the twisted XXZ Hamiltonian (2) when
differentiating w.r.t. the spectral parameter. The result differs from one obtained in (2.60) of [12] which contains a
typo.
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E
(n)
0 = lim

q̃→q
En

0 (q̃)/[n]q̃! =
∑
mi

ζm1 · · · ζmn
q−nσ z ⊗ · · · ⊗ σ−

mth
1

⊗ q(1−n)σ z · · · ⊗ σ−
mth

2

⊗ q(2−n)σ z · · · q−σ z ⊗ σ−
mth

n
⊗ 1 · · · ⊗ 1

and

F
(n)
1 = lim

q̃→q
F n

1 (q̃)/[n]q̃! =
∑
mi

1 ⊗ · · · 1 ⊗ σ−
mth

1
⊗ q−σ z · · · ⊗ σ−

mth
2

⊗ q−2σ z · · · q−(n−1)σ z ⊗ σ−
mth

n
⊗ · · · ⊗ q−nσ z

F
(n)
0 = lim

q̃→q
F n

0 (q̃)/[n]q̃! =
∑
mi

ζ−1
m1

· · · ζ−1
mn

1 ⊗ · · · 1 ⊗ σ +
mth

1
⊗ qσz · · · ⊗ σ +

mth
2

⊗ q2σ z · · · q(n−1)σ z ⊗ σ +
mth

n
⊗ · · · ⊗ qnσz

.

Here the sums are restricted to the n-tuples (m1, . . . , mn) with 1 � m1 < · · · < mn � M .
Remarkably, the subalgebra generated by the above operators with powers equal to

n = N ′ :=
{
N N odd
N/2 N even

is isomorphic to the ‘classical’ loop algebra U(s̃l2) [1, 8, 11]. The projection U res
q (s̃l2) →

U(s̃l2) is referred to as the quantum Frobenius homomorphism [11]. In order to stress that
this is an infinite-dimensional algebra we rewrite U(s̃l2) in terms of its mode basis

hm+n = [
x+

m, x−
n

] [
hm, x±

n

] = ±2x±
m+n

(20)
[hm, hn] = 0

[
x±

m+1, x
±
n

] = [
x±

m, x±
n+1

]
.

The generators
{
x±

m, hm

}
m∈Z

can be successively obtained from the Chevalley–Serre basis via
the correspondence [11]

E
(N ′)
1 → x+

0 F
(N ′)
1 → x−

0 E
(N ′)
0 → x−

1 F
(N ′)
0 → x+

−1 2Sz/N ′ → h0.

(21)

For later purposes let us identify the upper and lower Borel subalgebras U(b±) ⊂ U(s̃l2).
In terms of the Chevalley–Serre basis they are generated by

{
E

(N ′)
0 , E

(N ′)
1 , 2Sz/N ′} and{

F
(N ′)
0 , F

(N ′)
1 , 2Sz/N ′}, respectively. In the mode basis they simply correspond to the algebras

associated with the positive and negative integers,

U(b+) = {
x±

m, hm

}
m∈Z>0

∪ {
x+

0 , h0
}

and U(b−) = {
x±

m, hm

}
m∈Z<0

∪ {
x−

0 , h0
}
.

(22)

We are now in a position to discuss the various symmetries of the twisted six-vertex model
at roots of unity. Taking the root-of-unity limit in (18) and (19) we obtain the relations

E
(N ′)
1 T λ = qN ′

T λE
(N ′)
1 + λ− 1

2 (1 − λK1)CE
(N ′−1)
1

(23)
E

(N ′)
0 T λ = qN ′

T λE
(N ′)
0 + λ

1
2 z(1 − λ−1K0)BE

(N ′−1)
0

and

F
(N ′)
1 T λ = F

(N ′)
1 qN ′

T λ − λ− 1
2 q−N ′(

1 − λK−1
1

)
F

(N ′−1)
1 B

(24)
F

(N ′)
0 T λ = F

(N ′)
0 qN ′

T λ − λ
1
2 z−1q−N ′(

1 − λ−1K−1
0

)
F

(N ′−1)
0 C.
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Table 1. The various symmetry algebras for the twisted six-vertex model at a primitive root of
unity qN = 1 and the spin sectors in which they have been constructed explicitly.

Twist Symmetry Spin sector

λ = 1 U(s̃l2) 2Sz = 0 mod N

λ = qn U(b±) 2Sz = ∓n mod N

λ = q∓2Sz
U(b±) All sectors

Thus, upon inserting K1 = K−1
0 = q2Sz

we now infer immediately that whenever the terms
in brackets vanish we obtain a symmetry algebra. For periodic boundary conditions, λ = 1,
we recover the previously obtained loop algebra symmetry U(s̃l2) in the commensurate
sectors 2Sz = 0 mod N [1]. For twisted boundary conditions with λ = q∓n, 0 < n < N,

we apparently only obtain ‘half’ the symmetry algebra, namely U(b±), in the spin sectors
2Sz = ±n mod N . This is due to the fact that the Cartan generators Ki appear with inverse
powers in (24) compared to those in (23). Obviously, we again recover the full loop algebra
as a symmetry for even roots of unity and n = N ′, i.e. the case of antiperiodic boundary
conditions λ = qN ′ = −1 discussed in [2].

So far all discussed symmetries have only been established for certain commensurate spin
sectors. If we choose, however, the twist parameter to depend on the total spin the infinite-
dimensional non-Abelian algebras (22) extend to a symmetry for all spin sectors. Namely, we
now consider the transfer matrices

T ±(z) = Tr
0

q±σ z⊗Sz

R0M(z/ζM) · · · R01(z/ζ1) = q±Sz

A(z) + q∓Sz

D(z). (25)

At first sight one might be worried that the twist parameter is now an operator instead of a mere
constant. But according to (14) we have

[
A, qSz] = [

D, qSz] = 0 whence upon employing
the standard relations of the six-vertex Yang–Baxter algebra the integrability of the model is
ensured, i.e.

[T ±(z), T ±(w)] = [A(z),D(w)] + [D(z),A(w)] = 0. (26)

Thus, all results generalize in a straightforward manner to this case. The only difference is
that in the commutation relations (18) and (19) we now collect additional factors q̃±n on the
left-hand side of the equations as we have to ‘pull’ q̃±Sz

past the generators En
i , F n

i ,

En
1

(
q̃−n−Sz

A + q̃n+Sz

D
) = (

q̃n−Sz

A + q̃−n+Sz

D
)
En

1
(27)

Fn
1

(
q̃−n+Sz

A + q̃n−Sz

D
) = (

q̃n+Sz

A + q̃−n−Sz

D
)
Fn

1 .

The relations for the affine step operators follow from (16). As a consequence the transfer
matrices T ± now always commute with the generators of (22) in the root-of-unity limit q̃ → q

(instead of anticommuting for even roots of unity cf equations (23) and (24)),

[T +(z), U(b−)] = 0 and [T −(z), U(b+)] = 0. (28)

These symmetries hold for all spin sectors and are the main result of this paper. Note that
the case of periodic boundary conditions [1] is contained in these models for the sectors
2Sz = 0 mod N , where both transfer matrices coincide and the symmetry is enhanced to the
full loop algebra.

5. Conclusions

Let us summarize the established symmetry algebras for the twisted inhomogeneous six-vertex
model and their corresponding commensurate sectors in table 1. Note that the above findings
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Figure 1. The eigenvalues for the periodic XXZ Hamiltonian (1) with M = 6 as a function of the
deformation parameter q = exp 2π ix/3. The eigenvalues for the spin sector Sz = 2 are shown
in red colour. The eigenvalues corresponding to the two inner lines are each doubly degenerate.
The eigenvalues corresponding to the spin Sz = −1 sector are shown in black colour, also here
some of them are doubly degenerate. At the root-of-unity points x = 1/2, 1 we see that additional
degeneracies occur between eigenvalues from the two different spin sectors. Note that these are
incommensurate sectors. The distinguished points x = 3/4, 3/2 correspond to the XX model and
the case when q = −1.

do not exclude the possibility that the symmetries found [1, 2] for the boundary conditions
λ �= q±2Sz

can be extended to all spin sectors as well. For periodic boundary conditions
λ = 1 it has been argued in [1] that one might have to use projection operators to obtain the
symmetry algebra in the incommensurate sectors. As mentioned in the introduction this has
been explicitly demonstrated at the free fermion point, i.e. the XX model (N/2 = N ′ = 2).
For N ′ � 2 it has been proved that operators of the type En

1 En
0 , EN ′−n

1 EN ′−n
0 , etc commute

with the transfer matrix when λ = 1 and 2Sz = 2n mod N , cf equation (3.42) and section 3.5,
appendix A.5 in [1]. In equation (3.43) of the same work eight operators are stated which
should (anti)commute with the transfer matrix in the incommensurate sector 2Sz = 2n mod N

and a numerical procedure is described how the loop algebra relations have been verified for
N ′ = 3.

For the transfer matrices (25) we obviously do not need any projection operators to extend
the symmetry to all spin sectors, which indicates that these models possess a higher level of
degeneracies in their spectrum compared to the other boundary conditions. That this is indeed
the case has been numerically verified in the spin sectors Sz = 2,−1 of the M = 6 spin
chain when q3 = 1; see figures 1 and 2. Furthermore, our results for the twisted case when
λ �= q±2Sz

suggest that in the incommensurate sectors one might also encounter a smaller
symmetry algebra as the spin sector 2Sz = 0 mod N is clearly distinguished.

We emphasize again that in comparison with previously established non-Abelian
symmetries, e.g. the finite quantum group symmetry Uq(sl2) for the chain with open boundary
conditions [12], the symmetries established here involve infinite-dimensional algebras which
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Figure 2. The eigenvalues for the twisted XXZ Hamiltonian (2) with the twist depending on the
spin λ = q2Sz

. As in the periodic case the eigenvalues in the spin sector Sz = 2 and Sz = −1
are displayed in red and black, respectively. Unlike in the periodic case the degeneracies of the
Hamiltonian within the respective spin sectors are lifted. In addition, we see that at the root-of-unity
values x = 1/2, 1 all six eigenvalues of the Sz = 2 sector become degenerate with eigenvalues in
the Sz = −1 sector. These degeneracies indicate the discussed U(b±) symmetries.

impose more powerful restrictions. The next step in this context is to relate the representation
theory of these algebras to the Bethe ansatz.

For periodic boundary conditions λ = 1 this has already partially been done in [4, 14–16].
In [4] creation operators involving complete strings have been constructed which involve
two polynomials depending on the Bethe roots. Based on numerical results one of these
polynomials has been conjectured [4, 13] to coincide with the classical limit (q → 1) of the
Drinfeld polynomial [17] which describes the irreducible representations of the loop algebra
[11] in the sectors 2Sz = 0 mod N . The previously formulated conjecture [1, 4, 13] that the
regular XXZ Bethe vectors correspond to the highest weight vectors of the loop algebra has
been investigated in [14] by means of the algebraic Bethe ansatz. Also here the results have
been limited to the commensurate sectors 2Sz = 0 mod N where the algebraic structure of the
symmetry generators has been identified. In [15, 16] the degeneracies of the periodic six-vertex
model have been investigated from a different point of view by applying representation theory
to construct analogues of Baxter’s Q-operator. In [16] the classical Drinfeld polynomial
has been identified in the spectrum of these Q-operators for several explicit examples
when N = 3.

Clearly, the advantage of imposing the quasi-periodic boundary conditions λ = q±2Sz

is
that the symmetry algebra is now known for all spin sectors while at the same time leaving
the algebraic structure of the Bethe ansatz largely unchanged. This makes the twisted model
(25) an ideal candidate for representation theoretic investigations and one can expect to find
similar results as for the periodic case. Of particular interest in this context is also the study
of finite-size effects in the thermodynamic limit, similar to those done in existing numerical
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investigations of the twisted XXZ chain e.g. [18–21]. These issues will be addressed in a
forthcoming paper [23]3.

Finally, it needs to be pointed out that the proof of the infinite-dimensional symmetries
given in this paper has only made use of the intertwining property of the monodromy
matrix. This property is common to a large class of integrable vertex models associated
with trigonometric solutions to the Yang–Baxter equation and quantum affine (super)algebras.
Despite the obvious modifications in the algebraic structure of the Yang–Baxter algebra, we
expect that the results found here can be extended to these models in a similar way as the
periodic case has been generalized to other models in [8, 9] (albeit with different methods).
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